
Address/MemorySanitizer, valgrind
and their integration into non-trivial C projects and CI

Jakub Jelen

C programming

C: Insecure programming language

● heap/stack overflows/underflows
● uninitialized memory
● double free
● memory leaks
● …

→ CVEs (DoS, RCE, …)

Hundreds of thousands of lines of C code …
… in hundreds of crucial projects …
… dozens of years of history …
… and people still create new projects

● Rewrite all to some safer language?

or

● Introduce static and dynamic analyzers

Dynamic analyzers: prerequisites & common features

Prerequisites:

● C project
● The test suite with reasonable code coverage

Common features:

● Provide address/memory sanitization
○ With CPU and memory overhead!

● Detect address/memory issues in executed code

What is the difference?

AddressSanitizer:

● build with instrumentation
● run (tests) normally

Valgrind:

● build normally
● run code (tests) under valgrind

AddressSanitizer:

● gcc -fsanitize=address hello.c
● ./a.out

Valgrind:

● gcc hello.c
● valgrind ./a.out

Easy?

Dynamically loaded libraries

● PKCS#11 modules
● OpenSSL providers/engines

○ Internal: default/fips
○ Third-party: pkcs11

● …

Example:

h = dlopen(argv[1], RTLD_NOW | RTLD_LOCAL | RTLD_DEEPBIND);
…
dlclose(h);

What could go wrong?

AddressSanitizer: RTLD_DEEPBIND

● common dlopen flag
● Does not work with ASAN

● Change code – not crucial flag
● Override library call using

LD_PRELOAD to remove the flags
from each call if outside of reach

$./hello_dl `realpath hello_lib.so`
==37678==You are trying to dlopen a hello_lib.so shared library with
RTLD_DEEPBIND flag which is incompatible with sanitizer runtime (see
https://github.com/google/sanitizers/issues/611 for details). If you want
to run hello_lib.so library under sanitizers please remove RTLD_DEEPBIND
from dlopen flags.

AddressSanitizer: First invoked binary instrumented

Loading the instrumented library from third-party
application

● Example: provider for openssl

● Rebuild whole OpenSSL with asan?
● Or use dynamic address sanitizer through

LD_PRELOAD

$./hello_dl_noninstrumented `realpath hello_lib.so`
==39102==ASan runtime does not come first in initial library list; you
should either link runtime to your application or manually preload it with
LD_PRELOAD.

$ LD_PRELOAD=/usr/lib64/libasan.so.8.0.0 \
 ./hello_dl_noninstrumented `realpath hello_lib.so`
Hello world

https://github.com/google/sanitizers/wiki/AddressSanitizerAsDso

AddressSanitizer: Useful backtraces

● Unloading the library with dlclose(), removes debug symbols
● Backtraces are useless

$ LD_PRELOAD=/usr/lib64/libasan.so.8.0.0 \
 ./hello_dl_noninstrumented `realpath hello_lib_leaks.so`
Hello world
===
==40473==ERROR: LeakSanitizer: detected memory leaks
Direct leak of 12 byte(s) in 1 object(s) allocated from:

#0 0x7fe9a6c814a8 in strdup (/usr/lib64/libasan.so.8.0.0+0x814a8) (BuildId:
542ad02088f38edfdba9d4bfa465b2299f512d3e)

#1 0x7fe9a7314177 (<unknown module>)
#2 0x401218 in main (.../asan_talk/hello_dl_noninstrumented+0x401218)

(BuildId: 05540ebc82700da10d571f4b09db6d19372b2b82)
[...]
SUMMARY: AddressSanitizer: 12 byte(s) leaked in 1 allocation(s).

AddressSanitizer: Useful backtraces

● Remove dlclose() library calls
● Or override them with LD_PRELOAD if outside of reach (after asan!)
$ LD_PRELOAD=/usr/lib64/libasan.so.8.0.0:̀realpath fake_dlclose.so ̀\
 ./hello_dl_noninstrumented `realpath hello_lib_leaks.so`
Hello world
===
==40473==ERROR: LeakSanitizer: detected memory leaks
Direct leak of 12 byte(s) in 1 object(s) allocated from:

#0 0x7fe9a6c814a8 in strdup (/usr/lib64/libasan.so.8.0.0+0x814a8) (BuildId:
542ad02088f38edfdba9d4bfa465b2299f512d3e)

#1 0x7f291fc7e137 in write_hello (.../hello_lib_leaks.so+0x1137) (BuildId:
22ffde08890b5e02463407bc1e1cc7ac2a21a26c)

#2 0x401218 in main (.../asan_talk/hello_dl_noninstrumented+0x401218)
(BuildId: 05540ebc82700da10d571f4b09db6d19372b2b82)

AddressSanitizer: Tests using other LD_PRELOAD libs

Wrappers allow running testsuite of complicated application in user-space:

● socket_wrapper – simulate network communication
● uid_wrapper – simulate root user and user switching
● nss_wrapper – emulate users, groups …
● pam_wrapper – emulate PAM conversation
● priv_wrapper – emulate privilege separation/seccomp

There is a bug in glibc

● Sorry, won’t not work now!

https://sourceware.org/bugzilla/show_bug.cgi?id=30424

AddressSanitizer: shell scripts test drivers

● Some binary tests run from shell scripts
● Do not change environment for them!

○ They might break
○ They will be slow
○ There will be false positives

● Create helper variable
○ ex. $CHECKER

● Prefix each test program infocation with it

$ cat fake_dlclose.c
#include <stdio.h>
int dlclose(void *h){
 return 0;
}
$ gcc -c fake_dlclose.c -o \
 fake_dlclose.o
$ gcc -shared fake_dlclose.o -o \
 fake_dlclose.so
$ ASAN=/usr/lib64/libasan.so.8.0.0
$ DLCLOSE=$(realpath fake_dlclose.so)
$ CHECKER=”env
LD_PRELOAD=$ASAN:$DLCLOSE”

$ $CHECKER test_cmd

AddressSanitizer: tweaks and related

● Incomplete backtraces?
○ ASAN_OPTIONS='fast_unwind_on_malloc=0'

● Third-party library issues can be suppressed:
○ LSAN_OPTIONS=”suppressions=`realpath lsan.supp`”;

● Other configuration through environment
● Other sanitizers work similarly

○ Memory Sanitizer – uninitialized memory, clang only, more tweaks
○ Leak Sanitizer (integrated in Address Sanitizer)
○ Undefined Behavior Sanitizers (clang only)

https://github.com/google/sanitizers/wiki/AddressSanitizerFlags
https://github.com/google/sanitizers/wiki/MemorySanitizerLibcxxHowTo

AddressSanitizer: Summary

● So not so normal invocation …

Demo?

valgrind (mostly memcheck)

Similar issues:

● dlclose() removes debuginfo
○ → Unusable backtraces
○ LD_PRELOAD library to make it no-op
○ Remove the function call
○ Use --keep-debuginfo=yes

● Avoid running shell scripts under valgrind
● Suppression file:

○ --suppressions=proj.supp

Different:

● It’s much slower (10x)
○ Might need add longer sleeps/waits

● Its noisy: use -q
● Change exit code on error:

○ --error-exitcode=1

Invocations:

● Code/test modifications
● Run test command under valgrind

$ CHECKER=”valgrind -q
--keep-debuginfo=yes”

$ $CHECKER test_cmd

It’s getting similar now …

valgrind: more information

Valgrind is not only memcheck:

● Other tools for other use cases
● cachegrind, callgrind, helgrind, drd,

massif, dhat, lackey, exp-bbv, …

If interested in some, please, let me know

Putting it all together

Different build systems

● Autoconf should be enough for everyone

unless it is not

● CMake
● Meson
● …

Autoconf, automake and autotools

valgrind

● There are macros in autoconf-archive:
○ https://www.gnu.org/software/autoconf-arc

hive/ax_valgrind_check.html
○ ./configure --enable-valgrind
○ make check-valgrind-memcheck
○ Exports $VALGRIND environment
○ → change to $CHECKER

AddressSanitizer

● Update CFLAGS and LDFLAGS:

CFLAGS="-fsanitize=address $CFLAGS"
LDFLAGS="-fsanitize=address
$LDFLAGS"

● Prepare $CHECKER environment variable
● Run with make check

Common:

● Modify all tools invocation from shell scripts to be prefixed with $CHECKER
● Do not use both valgrind and asan!

Examples:

● https://github.com/OpenSC/OpenSC/pull/2756/files
● https://github.com/latchset/pkcs11-provider/pull/243/files

https://www.gnu.org/software/autoconf-archive/ax_valgrind_check.html
https://www.gnu.org/software/autoconf-archive/ax_valgrind_check.html
https://github.com/OpenSC/OpenSC/pull/2756/files
https://github.com/latchset/pkcs11-provider/pull/243/files

CMake: valgrind

● There is memcheck support in ctest:
○ https://cmake.org/cmake/help/latest/manual/ctest.1.html#ctest-memcheck-step
○ --test-action memcheck

● Detection of memory issues
○ less obvious as the ctest returns 0 even with errors
○ writes separate files with logs
○ Non-obvious way to provide suppression file

Example:

● https://gitlab.com/libssh/libssh-mirror/-/merge_requests/365/diffs

https://cmake.org/cmake/help/latest/manual/ctest.1.html#ctest-memcheck-step
https://gitlab.com/libssh/libssh-mirror/-/merge_requests/365/diffs

CMake: AddressSanitizer

● Build and link flags configured by CMAKE_BUILD_TYPE:
○ https://gitlab.com/libssh/libssh-mirror/-/blob/master/cmake/Modules/DefineCompilerFlags.cma

ke
○ Running the tests as usually

● ASAN not tested
○ Issues with LD_PRELOAD in libssh

https://gitlab.com/libssh/libssh-mirror/-/blob/master/cmake/Modules/DefineCompilerFlags.cmake
https://gitlab.com/libssh/libssh-mirror/-/blob/master/cmake/Modules/DefineCompilerFlags.cmake

What next?

● Have upstream projects?
● Static analyzers

○ Fast, but simple: can not imagine all the possible code paths
○ Coverity scan integrated in upstream CI

● Combine with fuzzing to find new inputs/code paths
○ Review code coverage regularly
○ Implement new fuzzers
○ Oss-fuzz infrastructure
○ Interested in more information? Let me know!

● Resolve the glibc issue
○ And extend the coverage

Thanks!

https://sourceware.org/bugzilla/show_bug.cgi?id=30424

